Note
Click here to download the full example code
Graphene hv scan¶
Simple workflow for analyzing a photon energy scan data of graphene as simulated from a third nearest neighbor tight binding model. The same workflow can be applied to any photon energy scan.
Import the “fundamental” python libraries for a generic data analysis:
import numpy as np
import matplotlib.pyplot as plt
Instead of loading the file as for example:
# from navarp.utils import navfile
# file_name = r"nxarpes_simulated_cone.nxs"
# entry = navfile.load(file_name)
Here we build the simulated graphene signal with a dedicated function defined just for this purpose:
from navarp.extras.simulation import get_tbgraphene_hv
entry = get_tbgraphene_hv(
scans=np.arange(90, 150, 2),
angles=np.linspace(-7, 7, 300),
ebins=np.linspace(-3.3, 0.4, 450),
tht_an=-18,
)
Plot a single analyzer image at scan = 90¶
First I have to extract the isoscan from the entry, so I use the isoscan method of entry:
iso0 = entry.isoscan(scan=90)
Then to plot it using the ‘show’ method of the extracted iso0:
iso0.show(yname='ekin')

Out:
<matplotlib.collections.QuadMesh object at 0x7fc56da82350>
Or by string concatenation, directly as:
entry.isoscan(scan=90).show(yname='ekin')

Out:
<matplotlib.collections.QuadMesh object at 0x7fc570ac4bd0>
Fermi level determination¶
The initial guess for the binding energy is: ebins = ekins - (hv - work_fun). However, the better way is to proper set the Fermi level first and then derives everything form it. In this case the Fermi level kinetic energy is changing along the scan since it is a photon energy scan. So to set the Fermi level I have to give an array of values corresponding to each photon energy. By definition I can give:
efermis = entry.hv - entry.analyzer.work_fun
entry.set_efermi(efermis)
Or I can use a method for its detection, but in this case, it is important to give a proper energy range for each photon energy. For example for each photon a good range is within 0.4 eV around the photon energy minus the analyzer work function:
energy_range = (
(entry.hv[:, None] - entry.analyzer.work_fun) +
np.array([-0.4, 0.4])[None, :])
entry.autoset_efermi(energy_range=energy_range)
Out:
scan(eV) efermi(eV) FWHM(meV) new hv(eV)
90.0000 85.4000 58.8 90.0000
92.0000 87.4003 58.6 92.0003
94.0000 89.4002 58.1 94.0002
96.0000 91.4002 58.7 96.0002
98.0000 93.4000 59.2 98.0000
100.0000 95.4003 58.4 100.0003
102.0000 97.4006 58.3 102.0006
104.0000 99.4010 56.6 104.0010
106.0000 101.3999 59.4 105.9999
108.0000 103.4004 58.7 108.0004
110.0000 105.4006 57.6 110.0006
112.0000 107.4003 58.5 112.0003
114.0000 109.4003 60.6 114.0003
116.0000 111.3999 59.3 115.9999
118.0000 113.3998 60.0 117.9998
120.0000 115.4002 59.4 120.0002
122.0000 117.4005 58.2 122.0005
124.0000 119.4002 59.3 124.0002
126.0000 121.4009 58.6 126.0009
128.0000 123.4005 58.1 128.0005
130.0000 125.4001 59.4 130.0001
132.0000 127.4006 57.4 132.0006
134.0000 129.4000 59.7 134.0000
136.0000 131.4003 58.2 136.0003
138.0000 133.3999 58.9 137.9999
140.0000 135.4004 58.6 140.0004
142.0000 137.3998 58.7 141.9998
144.0000 139.4003 60.1 144.0003
146.0000 141.4002 59.3 146.0002
148.0000 143.4004 59.1 148.0004
In both cases the binding energy and the photon energy will be updated consistently. Note that the work function depends on the beamline or laboratory. If not specified is 4.5 eV.
To check the Fermi level detection I can have a look on each photon energy. Here I show only the first 10 photon energies:
for scan_i in range(10):
print("hv = {} eV, E_F = {:.0f} eV, Res = {:.0f} meV".format(
entry.hv[scan_i],
entry.efermi[scan_i],
entry.efermi_fwhm[scan_i]*1000
))
entry.plt_efermi_fit(scan_i=scan_i)
Out:
hv = 90.0000026322631 eV, E_F = 85 eV, Res = 59 meV
hv = 92.00034396834147 eV, E_F = 87 eV, Res = 59 meV
hv = 94.00020052850076 eV, E_F = 89 eV, Res = 58 meV
hv = 96.0002071725171 eV, E_F = 91 eV, Res = 59 meV
hv = 97.99996511943282 eV, E_F = 93 eV, Res = 59 meV
hv = 100.00033060955292 eV, E_F = 95 eV, Res = 58 meV
hv = 102.00057713915359 eV, E_F = 97 eV, Res = 58 meV
hv = 104.00101948382944 eV, E_F = 99 eV, Res = 57 meV
hv = 105.99986522692515 eV, E_F = 101 eV, Res = 59 meV
hv = 108.0004287342628 eV, E_F = 103 eV, Res = 59 meV
Plot a single analyzer image at scan = 110 with the Fermi level aligned¶
entry.isoscan(scan=110).show(yname='eef')

Out:
<matplotlib.collections.QuadMesh object at 0x7fc56d553890>
Plotting iso-energetic cut at ekin = efermi¶
entry.isoenergy(0).show()

Out:
<matplotlib.collections.QuadMesh object at 0x7fc56db2c0d0>
Plotting in the reciprocal space (k-space)¶
I have to define first the reference point to be used for the transformation. Meaning a point in the angular space which I know it correspond to a particular point in the k-space. In this case the graphene Dirac-point is for hv = 120 is at ekin = 114.3 eV and tht_p = -0.6 (see the figure below), which in the k-space has to correspond to kx = 1.7.
hv_p = 120
entry.isoscan(scan=hv_p, dscan=0).show(yname='ekin', cmap='cividis')
tht_p = -0.6
e_kin_p = 114.3
plt.axvline(tht_p, color='w')
plt.axhline(e_kin_p, color='w')
entry.set_kspace(
tht_p=tht_p,
k_along_slit_p=1.7,
scan_p=0,
ks_p=0,
e_kin_p=e_kin_p,
inn_pot=14,
p_hv=True,
hv_p=hv_p,
)

Out:
tht_an = -18.040
scan_type = hv
inn_pot = 14.000
phi_an = 0.000
k_perp_slit_for_kz = 0.000
kspace transformation ready
Once it is set, all the isoscan or iscoenergy extracted from the entry will now get their proper k-space scales:
entry.isoscan(120).show()

Out:
<matplotlib.collections.QuadMesh object at 0x7fc56da91f90>
sphinx_gallery_thumbnail_number = 17
entry.isoenergy(0).show(cmap='cividis')

Out:
<matplotlib.collections.QuadMesh object at 0x7fc570aaf410>
I can also place together in a single figure different images:
fig, axs = plt.subplots(1, 2)
entry.isoscan(120).show(ax=axs[0])
entry.isoenergy(-0.9).show(ax=axs[1])
plt.tight_layout()

Many other options:¶
fig, axs = plt.subplots(2, 2)
scan = 110
dscan = 0
ebin = -0.9
debin = 0.01
entry.isoscan(scan, dscan).show(ax=axs[0][0], xname='tht', yname='ekin')
entry.isoscan(scan, dscan).show(ax=axs[0][1], cmap='binary')
axs[0][1].axhline(ebin-debin)
axs[0][1].axhline(ebin+debin)
entry.isoenergy(ebin, debin).show(
ax=axs[1][0], xname='tht', yname='phi', cmap='cividis')
entry.isoenergy(ebin, debin).show(
ax=axs[1][1], cmap='magma', cmapscale='log')
axs[1][0].axhline(scan, color='w', ls='--')
axs[0][1].axvline(1.7, color='r', ls='--')
axs[1][1].axvline(1.7, color='r', ls='--')
x_note = 0.05
y_note = 0.98
for ax in axs[0][:]:
ax.annotate(
"$scan \: = \: {} eV$".format(scan, dscan),
(x_note, y_note),
xycoords='axes fraction',
size=8, rotation=0, ha="left", va="top",
bbox=dict(
boxstyle="round", fc='w', alpha=0.65, edgecolor='None', pad=0.05
)
)
for ax in axs[1][:]:
ax.annotate(
"$E-E_F \: = \: {} \pm {} \; eV$".format(ebin, debin),
(x_note, y_note),
xycoords='axes fraction',
size=8, rotation=0, ha="left", va="top",
bbox=dict(
boxstyle="round", fc='w', alpha=0.65, edgecolor='None', pad=0.05
)
)
plt.tight_layout()

Total running time of the script: ( 0 minutes 7.404 seconds)